Easily convert tool, agents and orchestrators from existing agent frameworks to MCP servers
automcp allows you to easily convert tools, agents and orchestrators from existing agent frameworks into MCP servers, that can then be accessed by standardized interfaces via clients like Cursor and Claude Desktop.
We currently support deployment of agents, tools, and orchestrators as MCP servers for the following agent frameworks:
Install from PyPI:
# Basic installation
pip install naptha-automcp
# UV
uv add naptha-automcp
Or install from source:
git clone https://github.com/napthaai/automcp.git
cd automcp
uv venv
source .venv/bin/activate
pip install -e .
Create a new MCP server for your project:
Navigate to your project directory with your agent implementation:
cd your-project-directory
Generate the MCP server files via CLI with one of the following flags (crewai, langgraph, llamaindex, openai, pydantic, mcp_agent):
automcp init -f crewai
Edit the generated run_mcp.py
file to configure your agent:
# Replace these imports with your actual agent classes
from your_module import YourCrewClass
# Define the input schema
class InputSchema(BaseModel):
parameter1: str
parameter2: str
# Set your agent details
name = "<YOUR_AGENT_NAME>"
description = "<YOUR_AGENT_DESCRIPTION>"
# For CrewAI projects
mcp_crewai = create_crewai_adapter(
orchestrator_instance=YourCrewClass().crew(),
name=name,
description=description,
input_schema=InputSchema,
)
Install dependencies and run your MCP server:
automcp serve -t sse
When you run automcp init -f <FRAMEWORK>
, the following file is generated:
This is the main file that sets up and runs your MCP server. It contains:
You'll need to edit this file to:
The repository includes examples for each supported framework:
# Clone the repository
git clone https://github.com/NapthaAI/automcp.git
cd automcp
# Install automcp in development mode
pip install -e .
# Navigate to an example directory
cd examples/crewai/marketing_agents
# Generate the MCP server files (use the appropriate framework)
automcp init -f crewai
# Edit the generated run_mcp.py file to import and configure the example agent
# (See the specific example's README for details)
# Add a .env file with necessary environmental variables
# Install dependencies and run
automcp serve -t sse
Each example follows the same workflow as a regular project:
automcp init -f <FRAMEWORK>
to generate the server filesrun_mcp.py
to import and configure the example agentautomcp serve -t sse
Here's what a typical configured run_mcp.py
looks like for a CrewAI example:
import warnings
from typing import Any
from automcp.adapters.crewai import create_crewai_adapter
from pydantic import BaseModel
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("MCP Server")
warnings.filterwarnings("ignore")
from crew import MarketingPostsCrew
class InputSchema(BaseModel):
project_description: str
customer_domain: str
name = "marketing_posts_crew"
description = "A crew that posts marketing posts to a social media platform"
# Create an adapter for crewai
mcp_crewai = create_crewai_adapter(
orchestrator_instance=MarketingPostsCrew().crew(),
name=name,
description=description,
input_schema=InputSchema,
)
mcp.add_tool(
mcp_crewai,
name=name,
description=description
)
# Server entrypoints
def serve_sse():
mcp.run(transport="sse")
def serve_stdio():
# Redirect stderr to suppress warnings that bypass the filters
import os
import sys
class NullWriter:
def write(self, *args, **kwargs):
pass
def flush(self, *args, **kwargs):
pass
# Save the original stderr
original_stderr = sys.stderr
# Replace stderr with our null writer to prevent warnings from corrupting STDIO
sys.stderr = NullWriter()
# Set environment variable to ignore Python warnings
os.environ["PYTHONWARNINGS"] = "ignore"
try:
mcp.run(transport="stdio")
finally:
# Restore stderr for normal operation
sys.stderr = original_stderr
if __name__ == "__main__":
import sys
if len(sys.argv) > 1 and sys.argv[1] == "sse":
serve_sse()
else:
serve_stdio()
After setting up your files, you can run your server using one of these methods:
# Using the automcp CLI
automcp serve -t stdio # STDIO transport
automcp serve -t sse # SSE transport
# Or run the Python file directly
python run_mcp.py # STDIO transport
python run_mcp.py sse # SSE transport
# Or with uv run (if configured in pyproject.toml)
uv run serve_stdio
uv run serve_sse
Note about transport modes:
python run_mcp.py sse
or automcp serve -t sse
If you want to use the uv run
commands, add the following to your pyproject.toml
:
[tool.uv.scripts]
serve_stdio = "python run_mcp.py"
serve_sse = "python run_mcp.py sse"
Naptha supports deploying your newly-created MCP server to our MCP servers-as-a-service platform! It's easy to get started.
OPENAI_API_KEY
, etc.To integrate with Cursor IDE, create a .cursor
folder in your project root and add an mcp.json
file with the following configuration:
{
"mcpServers": {
"crew-name-stdio": {
"type": "stdio",
"command": "/absolute/path/to/your/.venv/bin/uv",
"args": [
"--directory",
"/absolute/path/to/your/project_dir",
"run",
"serve_stdio"
],
"env": {
"OPENAI_API_KEY": "sk-",
"SERPER_API_KEY": ""
}
},
"crew-name-python": {
"type": "stdio",
"command": "/absolute/path/to/your/.venv/bin/python",
"args": [
"/absolute/path/to/your/project_dir/run_mcp.py"
],
"env": {
"OPENAI_API_KEY": "sk-",
"SERPER_API_KEY": ""
}
},
"crew-name-automcp": {
"type": "stdio",
"command": "/absolute/path/to/your/.venv/bin/automcp",
"args": [
"serve",
"-t",
"stdio"
],
"cwd": "/absolute/path/to/your/project_dir",
"env": {
"OPENAI_API_KEY": "sk-",
"SERPER_API_KEY": ""
}
},
"crew-name-sse": {
"type": "sse",
"url": "http://localhost:8000/sse"
}
}
}
Note: Be sure to replace all placeholder paths with absolute paths to your actual files and directories.
Push your project to GitHub and use:
{
"mcpServers": {
"My Agent": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/your-username/your-repo",
"serve_stdio"
],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}
Want to add support for a new agent framework? Here's how:
# automcp/adapters/framework.py
import json
import contextlib
import io
from typing import Any, Callable, Type
from pydantic import BaseModel
def create_framework_adapter(
agent_instance: Any,
name: str,
description: str,
input_schema: Type[BaseModel],
) -> Callable:
"""Doc string for your function"""
# Get the field names and types from the input schema
schema_fields = input_schema.model_fields
# Create the parameter string for the function signature
params_str = ", ".join(
f"{field_name}: {field_info.annotation.__name__}"
for field_name, field_info in schema_fields.items()
)
# Create the function body that constructs the input schema
# Note: You may need to adjust the method calls (kickoff, model_dump_json)
# to match your framework's specific API
body_str = f"""def run_agent({params_str}):
inputs = input_schema({', '.join(f'{name}={name}' for name in schema_fields)})
with contextlib.redirect_stdout(io.StringIO()):
result = agent_instance.framework_specific_run(inputs=inputs.model_dump())
return result.framework_specific_result()
"""
# Create a namespace for the function
namespace = {
"input_schema": input_schema,
"agent_instance": agent_instance,
"json": json,
"contextlib": contextlib,
"io": io,
}
# Execute the function definition in the namespace
exec(body_str, namespace)
# Get the created function
run_agent = namespace["run_agent"]
# Add proper function metadata
run_agent.__name__ = name
run_agent.__doc__ = description
return run_agent
npx @modelcontextprotocol/inspector
NapthaAI/automcp
March 28, 2025
July 6, 2025
Python